16 research outputs found

    Pick, Pack, & Survive: Charging Robots in a Modern Warehouse based on Online Connected Dominating Sets

    Get PDF
    The modern warehouse is partially automated by robots. Instead of letting human workers walk into shelfs and pick up the required stock, big groups of autonomous mobile robots transport the inventory to the workers. Typically, these robots have an electric drive and need to recharge frequently during the day. When we scale this approach up, it is essential to place recharging stations strategically and as soon as needed so that all robots can survive. In this work, we represent a warehouse topology by a graph and address this challenge with the Online Connected Dominating Set problem (OCDS), an online variant of the classical Connected Dominating Set problem [Guha and Khuller, 1998]. We are given an undirected connected graph G = (V, E) and a sequence of subsets of V arriving over time. The goal is to grow a connected subgraph that dominates all arriving nodes and contains as few nodes as possible. We propose an O(log^2 n)-competitive randomized algorithm for OCDS in general graphs, where n is the number of nodes in the input graph. This is the best one can achieve due to Korman\u27s randomized lower bound of Omega(log n log m) [Korman, 2005] for the related Online Set Cover problem [Alon et al., 2003], where n is the number of elements and m is the number of subsets. We also run extensive simulations to show that our algorithm performs well in a simulated warehouse, where the topology of a warehouse is modeled as a randomly generated geometric graph

    A Robot to Shape your Natural Plant: The Machine Learning Approach to Model and Control Bio-Hybrid Systems

    Get PDF
    Bio-hybrid systems---close couplings of natural organisms with technology---are high potential and still underexplored. In existing work, robots have mostly influenced group behaviors of animals. We explore the possibilities of mixing robots with natural plants, merging useful attributes. Significant synergies arise by combining the plants' ability to efficiently produce shaped material and the robots' ability to extend sensing and decision-making behaviors. However, programming robots to control plant motion and shape requires good knowledge of complex plant behaviors. Therefore, we use machine learning to create a holistic plant model and evolve robot controllers. As a benchmark task we choose obstacle avoidance. We use computer vision to construct a model of plant stem stiffening and motion dynamics by training an LSTM network. The LSTM network acts as a forward model predicting change in the plant, driving the evolution of neural network robot controllers. The evolved controllers augment the plants' natural light-finding and tissue-stiffening behaviors to avoid obstacles and grow desired shapes. We successfully verify the robot controllers and bio-hybrid behavior in reality, with a physical setup and actual plants

    Flora robotica -- An Architectural System Combining Living Natural Plants and Distributed Robots

    Full text link
    Key to our project flora robotica is the idea of creating a bio-hybrid system of tightly coupled natural plants and distributed robots to grow architectural artifacts and spaces. Our motivation with this ground research project is to lay a principled foundation towards the design and implementation of living architectural systems that provide functionalities beyond those of orthodox building practice, such as self-repair, material accumulation and self-organization. Plants and robots work together to create a living organism that is inhabited by human beings. User-defined design objectives help to steer the directional growth of the plants, but also the system's interactions with its inhabitants determine locations where growth is prohibited or desired (e.g., partitions, windows, occupiable space). We report our plant species selection process and aspects of living architecture. A leitmotif of our project is the rich concept of braiding: braids are produced by robots from continuous material and serve as both scaffolds and initial architectural artifacts before plants take over and grow the desired architecture. We use light and hormones as attraction stimuli and far-red light as repelling stimulus to influence the plants. Applied sensors range from simple proximity sensing to detect the presence of plants to sophisticated sensing technology, such as electrophysiology and measurements of sap flow. We conclude by discussing our anticipated final demonstrator that integrates key features of flora robotica, such as the continuous growth process of architectural artifacts and self-repair of living architecture.Comment: 16 pages, 12 figure

    WatchPlant: Networked Bio-hybrid Systems for Pollution Monitoring of Urban Areas

    Full text link
    [EN] Growing cities are a world-wide phenomenon and simultaneously awareness about potential dangers due to air pollution, heat, and pathogens is increasing. Integrated and permanent monitoring of environmental features in cities can help to establish an early warning system and to provide data for policy makers. In our new project `WatchPlant,Âż we propose a green approach for urban monitoring by a network of sensors tightly coupled with natural plants. We want to develop a sustainable, energy-efficient bio-hybrid system that harvests energy from living plants and utilizes methods of phytosensing, that is, using natural plants as sensors. We present our concept, here with focus on Alife-related methods operating on the gathered plant data and the bio-hybrid network. With a self-organizing network of sensors, that are alive, we hope to contribute to our future of livable green cities.Project WatchPlant has received funding from the European Union's Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899. Project Biohybrids is funded by H2020 program, grant agreement no. 945773.Hamann, H.; Bogdan, S.; Diaz-Espejo, A.; GarcĂ­a-Carmona, L.; Hernandez-Santana, V.; Kernbach, S.; Kernbach, A.... (2021). WatchPlant: Networked Bio-hybrid Systems for Pollution Monitoring of Urban Areas. MIT Press. 1-9. https://doi.org/10.1162/isal_a_003771

    Hybrid Societies : Challenges and Perspectives in the Design of Collective Behavior in Self-organizing Systems

    Get PDF
    Hybrid societies are self-organizing, collective systems, which are composed of different components, for example, natural and artificial parts (bio-hybrid) or human beings interacting with and through technical systems (socio-technical). Many different disciplines investigate methods and systems closely related to the design of hybrid societies. A stronger collaboration between these disciplines could allow for re-use of methods and create significant synergies. We identify three main areas of challenges in the design of self-organizing hybrid societies. First, we identify the formalization challenge. There is an urgent need for a generic model that allows a description and comparison of collective hybrid societies. Second, we identify the system design challenge. Starting from the formal specification of the system, we need to develop an integrated design process. Third, we identify the challenge of interdisciplinarity. Current research on self-organizing hybrid societies stretches over many different fields and hence requires the re-use and synthesis of methods at intersections between disciplines. We then conclude by presenting our perspective for future approaches with high potential in this area

    Flora Robotica – Mixed Societies of Symbiotic Robot-Plant Bio-Hybrids

    Get PDF
    Besides the life-as-it-could-be driver of artificial life research there is also the concept of extending natural life by creating hybrids or mixed societies that are built from both natural and artificial components. In this paper, we motivate and present the research program of the project flora robotica. We present our concepts of control, hardware de-sign, modeling, and human interaction along with preliminary experiments. Our objective is to develop and to investigate closely linked symbiotic relationships between robots and natural plants and to explore the potentials of a plant-robot society able to produce archi-tectural artifacts and living spaces. These robot-plant bio-hybrids create synergies that allow for new functions of plants and robots. They also create novel design opportunities for an architecture that fuses the design and construction phase. The bio-hybrid is an example of mixed societies between ‘hard artificial and ‘wet natural life, which enables an interaction between natural and artificial ecologies. They form an embodied, self-organizing, and distributed cognitive system which is supposed to grow and develop over long periods of time resulting in the creation of meaningful architectural structures. A key idea is to assign equal roles to robots and plants in order to create a highly integrated, symbiotic system. Besides the gain of knowledge, this project has the objective to cre-ate a bio-hybrid system with a defined function and application – growing architectural artifacts

    Biohybrid systems for environmental intelligence on living plants: WatchPlant project

    Full text link
    [EN] New challenges such as climate change and sustainability arise in society influencing not only environmental issues but human's health directly. To face these new challenges IT technologies and their application to environmental intelligent monitoring become into a powerful tool to set new policies and blueprints to contribute to social good. In the new H2020 project, WatchPlant will provide new tools for environmental intelligence monitoring by the use of plants as "well-being" sensors of the environment they inhabit. This will be possible by equipping plants with a net of communicated wireless self-powered sensors, coupled with artificial intelligence (AI) to become plants into "biohybrid organisms" to test exposure-effects links between plant and the environment. It will become plants into a new tool to be aware of the environment status in a very early stage towards in-situ monitoring. Additionally, the system is devoted to be sustainable and energy-efficient thanks to the use of clean energy sources such as solar cells and a enzymatic biofuel cell (BFC) together with its self-deployment, self-awareness, adaptation, artificial evolution and the AI capabilities. In this concept paper, WatchPlant will envision how to face this challenge by joining interdisciplinary efforts to access the plant sap for energy harvesting and sensing purposes and become plants into "biohybrid organisms" to benefit social good in terms of environmental monitoring in urban scenarios.Project WatchPlant has received funding from the European UnionÂżs Horizon 2020 research and innovation program under the FET grant agreement, no. 101017899.GarcĂ­a-Carmona, L.; Bogdan, S.; Diaz-Espejo, A.; Dobielewski, M.; Hamann, H.; Hernandez-Santana, V.; Kernbach, A.... (2021). Biohybrid systems for environmental intelligence on living plants: WatchPlant project. Association for Computing Machinery (ACM). 210-215. https://doi.org/10.1145/3462203.347588521021

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Braiding Thymios (robots view)

    No full text
    <p>Braiding thymios (robots view)</p
    corecore